58:080 Final Projects

Overview of Past Projects

Propose and Plan Final Projects

• Experimental Test Plan (see textbook Chapter 1.3): devise a plan of attack for experiments in order that the information you need is extracted.

Organized into Three Parts :

- I. <u>Parameter Design Plan</u>: identify process parameters and identify a means for their control.
- II. <u>System and Tolerance Design Plan</u>: select measurement technique, equipment, and procedure based on error tolerance .
- III. Data Reduction Design Plan: determine a method of analyzing, presenting and using the experimental data

Experimental Design includes development of the experimental test plan.

Proposal for Final Projects

 See website link Part 5 Lab for an overview

Analysis of an Electric Motor Using a Dynamometer

Equipment

- Dynamometer Kit
 - Permanent magnet
 DC electric motor
 - PM DC generator as load

Equipment

- Measurement
 Equipment
 - Digital Multimeter
 - RPM Meter
- Motor Controls
 - Voltage Power Supply
 - 50Ω Potentiometer

Set Up

- Connected Dynamometer and Electric Motor
- Used a series of four Digital Multi-Meters to measure voltage and current
- Power Source with variable voltage

Motor Testing

Motor Testing

Input Voltage vs.
 RPM

Field Data vs. Laboratory Data Efficiency Vs Output Power

Field Data vs. Laboratory DataInput Current vs. Output Power

Output Power

• Output Power:

P = VI	$P = (I^2)R$		D	oifference
3.612		3.16179		0.45021
1.06797		1.0585125		0.0094575
0.59675		0.591015		0.005735
0.35035		0.3105375		0.0398125
0.273		0.24255		0.03045
0.2769		0.2495295		0.0273705
0.34532		0.2978296		0.0474904
0.56024		0.5483647		0.0118753
1.03894		1.0296125		0.0093275
3.7335		3.08898		0.64452
3.762		3.13632		0.62568

Conclusions

- Lab was successful / Objectives met
 - Found all desired values
 - Followed same trends as field data
- Found discrepancies in quantitative values
 - Field data motor efficiencies from 80-90%
 - Acquired data motor efficiencies from 3-30%
 - Variations in results due to losses in system and low voltage inputs

Conclusions

- Future Recommendations
 - Use a torque meter
 - Compare measured torque with values found from equations
 - Find more accurate power values from measured torque
 - Stabilize motor and dynamometer
 - Improve safety of experiment
 - Allow for higher voltage inputs
 - Reduce losses in system to noise and vibration

Comparison of Two Speed of Sound Measurement Methods Introduction

- Objectives
 - Two separate experiments to test speed of sound
 - Balloon Experiment
 - Speaker Experiment
 - Compare to accepted values -
 - 346.22 m/s
 - Taken From http://www.measure.demon.co.uk/Acoustics_ Software/speed.html
 - T=23.3°C and relative humidity of 60%

Experimental Considerations Speaker/Microphone Method

- Calibration of Speaker/Microphone System
- Set Microphone a set distance away from speaker and set output to run into nicolet
- Run sinusoid wave through the speaker and through nicolet
- Capture the data from the nicolet for both the original sinusoid and the delayed output from microphone

Experimental Considerations Balloon Method

- Place two microphones a known distance apart.
- Setup microphones so that output is recorded into the wavebook data acquisition system
- pop a balloon, recording the resulting output from the microphones into the wavebook

Results Speaker/Microphone Method

Speaker/Microphone Method (continued)

Trial	Time Between Signals	Speed of Sound	
	[s]	[m/s]	
1	0.30 x 10 ⁻³	337.33	
2	0.23 x 10 ⁻³	440	
	Average	388.67 +/- 3.92	

Results Balloon Method

Light Fixture Heat Gain

Lighting is a major cooling load component

□ Calculation not straight forward → Estimation

Objective

Measure the actual heat gain of common light bulbs and compare it to theoretical design values.

Bulbs Measured

- 60W Incandescent
- 75W Incandescent
- 100W Incandescent
- 13W Fluorescent

\Box Lightbulb surface $\leq 200^{\circ}C$ (400°F)

Measurement Equipment Omega HFS-4 Thin-Film Heat Flux Sensor

General

28.5 mm (1.12 ± 0.06)

Upper Temperature Limit:	400°F		
Number of Junctions:	40		
Carrier:	Polyimide film (Kapton)		
Sensor Resistance:	300 Ω approximately		
Lead Wires:	#30 AWG Solid Copper, Teflon insulated color coded, 10 feet long		
Dimensions:	See Figure 5-1		
(1.38 ± 0.06)	3 m (10 ± 0.5 FT)		

Measurement Equipment

- Omega T-Type Thermocouple

- Ohio Semitronics Digital Load Monitor

Equipment Set-Up

□ Light Bulb Surface Temperatures

	Average W	
Bulb	Measured	T _{max}
60W	60W	72.47°C (162.45° F)
75W	78W	114.84°C (238.71° F)
100W	102W	119.02°C (246.24° F)
13W	13W	72.47°C (138.88° F)

Bulb Temperature vs. Time

Testing of a Prototype File Drawer Interlock Component

Introduction

Objective

• To determine if a file drawer interlock component will fail under a specified load

Motivation

- Safety
- New component design needs validation

Design Requirements

- •ANSI/BIFMA standards
 - Drawers must interlock
 - 50 lb drawer pull
- Increased by HON (2 x)
 100 lb drawer pull

Rocker Component

All dimensions in inches

Experimental Considerations

 Fabrication of prototype rocker and experimental apparatus

- Finite Element Analysis, FEA, for strain gauge placement
- Data reduction and uncertainty analysis

Finite Element Stress Result

von Mises Stress Distribution

File Cabinet Prototype

Prototype Testing

Results and Discussion

Maximum Deflection	m m	in.
Strain Gauge 1	0.9	0.0354
Strain Gauge 2	7.32	0.2882
Strain Gauge 3	5.39	0.2122
Strain Gauge 4	0.86	0.0339

Maximum Deflection at each strain gauge at maximum load
Low-Speed Dynamic Response of Shock Absorbers Introduction

- Shock absorber uses in vehicles
 Demon Suppopulation inputs
 - Dampen Suspension inputs
 - Control chassis roll rate
 - Control weight transfer
- Operating Principle Piston moving in a fluid

Types of Shocks

- Dual Tube
 - Tube set inside the main body of the shock
 - Piston has orifices which allow fluid to pass through as the piston moves
 - Orifices at the bottom of shock which allows fluid to pass through to the outer tube

Types of Shocks

- Monotube w/Floating Piston
 - Pressurized gas below piston becomes further compressed as the shock is compressed

Experimental Objective

- Explore the force required to compress and extend the shock
- Calculate the damping coefficients of an adjustable shock and a non-adjustable shock at 10 mm/s and 20 mm/s

Equipment Used

- 1790 Shock (adjustable)
- 1390 Shock (nonadjustable)
- Mechanical and Testing Simulation (MTS) machine
- MTS Load Cell
- Mounting Fixtures
- TestWare

Procedure

- MTS machine created a triangle wave
- The amplitude was held at a 4mm
- For high speed velocity test, frequency was set at 1.2 Hz (20 mm/s)
- For low speed velocity test, frequency was set at 0.6 Hz (10 mm/s)

Procedure

- No calibration performed
- MTS machine was "warmed up"
- Shock mounted in MTS machine
- Tests performed for each shock/shock valve setting at low and high speeds
- Data reduction with Microsoft Excel

- Force spike could reflect a pressure spike in the system
 - Observed when viscous dampening is less than 120 N.
 - Not likely stiction does not occur at 10 mm/s
 - Pressure response through valves

Calibration of Strain Gages with a Disc Brake Conversion Bracket

Introduction

- Objective: Calibrate strain gages in lab using torque sensor to measure applied loads
- Reduce data for 4 different loads and compare to ANSYS data at same 4 loads
- Determine uncertainty for strain gages
- Use uncertainty for assurance of accurate data with on-car testing

Experimental Considerations – The Bracket

- Prototype constructed of 1/4" 1018 plate steel
 - Soft steel, easily deflected
- Could not simulate on-car type load
- Changed method of applying load

Calibration Procedure

• Bolted the bracket to the spindle

ensures no movement in the lateral direction

- Mounted the spindle in a vice
- Applied a torque using a breaker bar
 - Amount of torque applied is limited to durability of the threads in hole
- Recorded data using DASYLab software

Bracket and Spindle

- Points A and B connect to the spindle
- Point C was location of applied torque

Instruments Used

- Omega Torque Indicator
 - Sensitivity:
 - 0.002141 mV / V / in-lb
- Craftsman Breaker Bar
- Omega Pre-wired Strain Gages

Reduced Data

Calibration Curve

Neptune Washer Dynamics

Objectives

- Analyze the displacement characteristics
 of the Neptune Washer
 - Top Speed Performance
 - Transition Performance (Ramp Test)

 Compare Data with data generated from numerical analysis (DADS)

Physical vs. Dynamic

Procedure

Calibrate Transducers

- Four Transducers
- ➤ 0 15 mm with 5 mm increments
- Six runs

Locate Dampers on the Tub

Location determined using previous analysis

Data Collection

- Top Speed and Ramp Test
- No Unbalance and 1.5 lb unbalance
- Determine Maximum Deflection Amplitudes

Data Collection

- Collected Data for 4
 tub locations
- Top Speed and Ramp Tests
- No Unbalance and 1.5 lb Unbalance

Ramp Test (0 lbs)

Front Vertical (Transducer #5) Ramp Test 0 lb Unbalance

Comparison of Insulation R-Values Introduction

Objective

 The objective of this experiment was to determine the accuracy of the specified Rvalue for various types of insulation.

- Motivation
 - Energy Crisis
 - Cost of Heating and Cooling Homes

Experimental Considerations

Schematic

Experimental Considerations

- Insulation Types Tested
 - John's Manville Comfort-Therm Fiberglass
 - R11
 - R11 w/ Vapor Retarder
 - R19 w/ Vapor Retarder

Experimental Considerations

- Calibrate T-type Thermocouples
- Calibrate Heat Flux Sensor?

Data Reduction
 – R-Values

$$q = \frac{\Delta T}{R} \qquad \qquad q = \frac{V_{heat-flux}}{0.007}$$

$$R = \frac{\Delta T}{\frac{V_{heat-flux}}{0.007}}$$

R-Values Using Outside Heat Flux Sensor and Thermocouples At Ambient Position

Cooling Tower Experiment

Experimental Setup

Procedure

Setup

- Clean Cooling Tower Pumping System and Filter
- Install Packing Material
- Soak Wet Bulb
 Thermocouple Wicks
- Flow Rate > 40 gps
- Differential Air Pressure Set at 16 mmH₂O

Experiment

- Heater Set at 0.5 kW
- Reach Steady State
- Record
 - Flow Rates: Water and Air
 - Temperatures: T1 to T6
 - Input Power
- Cases
 - 1: Press Board Packing
 - 2: Corrugated Packing
 - 3: Increased Air Temperature

John McLaughlin Brian Elliott Aric Arneson Kim Woehrle

Scope of Project

- Conduct an experiment using equipment and data analysis learned from the course
- Perform data reduction analysis
- Present and Report findings

Objective

Setup

Strain in the Shaft of a Golf Club

Introduction

- Motivation
 - Follow up to Mechanical Systems Design experiment
 - To investigate the effects of acceleration and club head speed on shaft strain
 - To have fun with the experiment

Theory

- Cantilevered beam
 - Stress/strain in beam

$$\sigma = \frac{Mc}{I}$$
 $\varepsilon = \frac{\sigma}{E}$ $I = \frac{\pi}{64}(D^4 - d^4)$ $M = PL$

- Strain, from strain gauge voltage

Theory

Accelerometer selection

- $\alpha = \partial \omega / \partial t$
- $\alpha = (\partial \omega / \partial s)^* (\partial s / \partial t)$
- $\alpha = \omega (\partial \omega / \delta s)$
- $-\alpha \delta s = \omega \partial \omega$
- $-\alpha \delta s = \partial \omega$
- $\alpha(s_e s_i) = (1/2)(\omega_e^2 \omega_i^2)$
- With s_i and ω_i = 0, the angular acceleration is α = 325 rad/s²
- a_{max} = 1654 ft/s² = 52g

$$- a_{max} = 276 \text{ ft/s}^2 = 8.6g$$

Installation and Calibration

- Strain gauge
 - Bending gauges in a full bridge configuration
 - Mounted at 33 cm. from hozzle
 - Some difficulty soldering gauge leads to strain relief and preventing leads from grounding on shaft

Nominal gauge resistance: 350+/-3% Ω

Installation and Calibration

- Strain gauge calibration
 - Used 0 500g mass in 100g increments to deflect shaft
 - Performed 3 up/down scale tests to check for hysteresis
 - Output voltage -> Calibration curve -> mass -> Force -> deflection -> Strain

• F = m a

$$\delta = -\frac{FL^3}{3EI}$$

Installation and Calibration

- Photo-gate
 - Used 1 set of Siemens Opto-Bero photo-gates
 - Transmitter and Receiver
 - No calibration was performed on photo-gate
 - Used in an On/Off manner

Experimental Procedure

Results

Club Head Acceleration for Matt vs. Time

Strain Vs. Acceleration

Thermal Resistance of a Limestone Bed

- Currently, a combination of Limestone and polystyrene insulation is used
 - Must meet building code for insulation req'ments
 - Polystyrene attracts termites
 - Limestone repels termites
- Could the polystyrene be replaced by additional limestone?

– Yes, but...

Background & Motivation

- Thermal Conductivity of Limestone must be determined
 - This will allow building designers to meet codes concerning insulation values around the buildings foundation
- How to determine Thermal Conductivity of Limestone?

Fourier's Law

$$Q'' = k \frac{\Delta T}{L}$$

.k is what we want...can we get everything else?

- Yes!
 - Thermocouples measure temperature.
 - Leads to

 ΔT

-Ruler can measure L

-Heat flux sensors available

Insulated box was built by FSG

 Built Cold/Hot plates to create a flow of heat, or heat flux across the material

Assembled

Assembled

Assembled

CALIBRATION OF TORQUE WRENCH & DEFLECTION OF PIPE

Introduction

- Objectives
 - Study the deflection and strain of a pipe with specified torques.
- Motivation
 - Tools for running the experiment were readily available.
 - The fabrication of the pipe was something the team could accomplish.
 - All team members were interested in this idea.

- Design
 - Selected two foot long, 1020 steel pipe.
 - Welded 2" x 2" x 1" block to end of pipe.
 - Welded 1-5/8" nut to opposite end.
 - Attached pipe clamp near nut end of pipe.

Table 1: Properties				
Properties	Value			
Inside Diameter (inches)	0.5			
Outside Diameter (inches)	0.75			
Length: Wrench to Vice (inches)	28.25			
Length: Displacement to Vice (inches)	22.625			
Modulus of Rigidity, G (lb/in^2)	11600000			

Calibration

Experiment

Experiment

Results and Discussion

Uncertainty of Linear Fit y = 0.2559x - 0.04396 +/- 0.3485

Table 2: Uncertainty of Linear Fit					
Torque Wrench	Average Voltage	Trend Voltage	Calculation		
Setting, xi (ft lbs)	Out, yi (mVDC)	Out, yci (mVDC)	Variables		
40	9.81	10.19	Sum xi	400	
60	15.42	15.31	Sum xiyi	9197.48	
80	20.42	20.43	Sum xi ²	36000	
100	25.49	25.55	Sum yi	101.95	
120	30.82	30.67	(Sum xi) ²	160000	

Hysteresis
Not prevalent

Determining Furnace Exit Gas Temperature

- Furnace Exit Gas Temperature (FEGT)
 - Heat Loss (\$\$)
 - Muscatine Power and Water Unit 7

• Determine the mean temperature and its 95% confidence interval.

Experiment Objective

- Determine the mean temperature and its 95% confidence interval.
 - Final Assembly
 - Sample Probes

Experiment

Final Assembly

Experiment

Final Assembly

Questions and Discussion?

Constant Stress In a Cantilever Beam

Introduction Continued...

$$\sigma(X) = \frac{M(X) \times c}{I} = \frac{6PX}{bt^2} = \frac{PX}{Z}$$

 $\frac{X}{Z(X)} = \frac{6X}{b(X)[t(X)]^2} = \text{constant}$

Keep thickness constant

$$\sigma(X) = \frac{6PX}{K_2 X t^2} = \frac{6P}{K_2 t^2} = \text{constant}$$

 Beam Designed so that Stress in Section A is twice in Section B

Gage Factor (GF) is
2.085

Measurement of Poisson's Ratio in an Aluminum Beam

Flexor Beam Setup

Objective

- To measure the Poisson's Ratio of an Aluminum beam by loading the beam in cantilever bending and measuring the ratio of the transverse strain to the axial strain
- Two different beam setups were used to accomplish this, one that was pre-gauged and one in which the strain gauges were applied

Wheatstone Bridge Setup

Strain Gauge Application

- Strain gauges were selected
- Application area sanded
- M-prep Conditioner applied
- M-prep Neutralizer applied
- Epoxy applied to strain gauge and surface
- Scotch tape used to apply strain gauge to surface and let to dry for 15 minutes
- Tape removed
- Connecting wires soldered to gauge terminals with tin/lead rosin core solder

Stress and Strain in a Cantilevered Beam with a Hole

Objective of Experiment

 To demonstrate the stress and strain concentration near a hole in a cantilevered beam

Background

 Maximum stress occurs at edge of hole and decreases to nominal stress

Design Procedures

- Placed four strain gages on a cantilevered beam with a hole
 - Prepared aluminum beam for strain gauge application
 - Placed tape on the pre-wired strain gages to enable correct placement
 - Applied adhesive and catalyst to bottom side of strain gage

Design Procedures

Design Procedures

 Mounted beam to flexor and Connected one strain gage at a time to flexor connection terminals

Design Procedures

Stress/Strain Distribution and Setup

DC Generator Dynamometer for a Reaction Turbine Introduction

- Objective:
 - Build a DC generator dynamometer to replace the existing Prony brake dynamometer
- Background:
 - Measurement of shaft power is useful in understanding the performance of turbines
- Motivation:
 - Existing Prony brake is difficult to use
 - It may be possible to reduce measurement uncertainty

Experimental Considerations

Prony Brake Setup

Experimental Considerations

Proposed Setup

Experimental Considerations

- Data acquisition:
 - Record voltage and current output from DC motor at three turbine pressures (40, 60, 80 kPa).
 - RPM range: 0-20,000 RPM
 - Method 1:
 - Belt tension varied to obtain measurements across turbine RPM range.
 - Method 2:
 - Resistive load was varied to obtain measurements across the RPM range of the turbine.

Strain, Young's Modulus and Viscoelasticity

Objectives

- To determine if accurate values of Young's Modulus could be obtained for various materials
- To compare strain values obtained from the experiment to theoretical strain values
- Analyze effect of defects on strain

• Four Materials

- Polyethylene (PE)
- Polyvinyl Chloride (PVC)
- Acrylic
- 2024-T4 Aluminum
- Six Weights (50g, 100g, 200g, 500g, 1kg, and 2kg)

Materials

 Polyethylene (PE) : Thermoplastic Polymer
 Polyvinyl Chloride (PVC) : Thermoplastic Polymer
 Acrylic: Polymethyl Methacrylate (PMMA), Plexiglas
 2024-T4 Aluminum

Rx = Strain Gauge

a) Quarter Wheatstone Bridge

b) Four Materials

(From left to right PVC, Acrylic, PE, Aluminum)

c) Beam Setup

Calculations

Theoretical Calculations

 $I = \frac{1}{12}bh^3$

I: Moment of Inertia b: Base h: Height

 $\sigma = FL\frac{C}{I}$

 $\varepsilon = \frac{\sigma}{E}$

σ: Stress
F: Force
L: Distance
C: the neutral axis to the outer edge of the beam

ε: Strainσ: StressΕ: Modulus of Elasticity

Calculations

Actual Calculations

 $\mathcal{E} = \frac{4V_o}{V_i(GF)}$

 $E = \frac{\sigma}{\varepsilon}$

Gage Factor (GF) : 2.11 V_o: Output Voltage V_i : Input Voltage E: Modulus of Elasticityσ: Stressε: Strain

Stress-Strain relationship of 2024-T4 Aluminum

Stress-Strain relationship of PE

Stress-Strain relationship of PVC

Stress-Strain relationship of Acrylic

- 2024-T4 Aluminum :
 - Measured E = 77.1 GPa (7.5% greater than empirical)
 - Actual strain was 8% smaller than theoretical.
- Polyvinyl Chloride (PVC) :
 - Measured E = 3.74 GPa (10% greater than empirical)
 - Actual Strain was 7% smaller than theoretical.

- Acrylic (PMMA):
 - Measured E = 2.58 GPa (11% lower than empirical)
 - Actual strain was 10% larger than theoretical.
- Polyethylene (PE):
 - Measured E = 0.93 GPa (30% greater than empirical)
 - Actual Strain was 25% smaller than theoretical.

Things to Notice

- Accuracy decreased with a decrease in Young's modulus.
- Thermoplastics: Two of them never reached theoretical strain.
- WHY???

Viscoelasticity

- Thermoplastic beams did not reach equilibrium immediately.
- Nor did the beams go back to zero strain position immediately
- Viscoelasticity : Time dependent elastic deformation

Purely Elastic Material vs Viscoelastic Material

a) Purely Elastic Material

b) Viscoelastic Material

 $\sigma = \sigma_{sp} + \sigma_d$

Viscoelasticity

Spring Stress:

 $\sigma_{sp} = E\varepsilon$

Dashpot Stress:

 $\sigma_d = 3\eta \varepsilon$

Applied stress (a) and induced strain (b) as functions of time for a viscoelastic material

Defect

• Four defects were applied to the PVC beam

Defect Positions on PVC Beam

Defect Effect

• Defect 1, 2, 3 :

~1% increase in strain each

 Defect 4 (next to the strain gage): ~13% increase in strain

Accuracy

- 2024-T4 Aluminum: ~87%
- Acrylic (PMMA): ~83%
- Polyethylene (PE): ~68%
- Polyvinyl Chloride (PVC): ~85%
- PVC with defects: ~78%

Conclusions

- Measured values were good approximations of theoretical values.
- Harder to get accurate results for viscoelastic materials
- Further experimentation would consider viscoelastic effects

Independent Lab: The Thermal Conductance of Various Hand Gloves Introduction: Objectives

- Compare the thermal conductivity coefficient (k-value) of various hand gloves assuming steady state
- Determine which glove is best suited for use during a cold lowa winter

Introduction: Background

- Effective thermal conductivity
 - Material transport property that depends on the physical structure of the material
 - Indicates the rate at which heat is transferred through the material by the diffusion process (Incropera, 2002).

Experimental Methods: Sensors/Instruments

- Brinkmann Cooling System
- Heat Flux Sensor
- 2 T-Type Thermocouples
- 5 Different Gloves
- DasyLab
- Heater
- Micrometer

Experimental Methods: Experimental Design

- Measured thickness of each glove
- Calibrated two thermocouples
- Attached sensors and heater to glove
- Placed glove inside insulated box
- Started data collection

Experimental Methods: Data Reduction

Data Analyses Equations

$$q = HeatFlux \div 2.22 \mu V / W / m^2$$

$$k = \frac{q * L}{(T_i - T_e)}$$

Results and Discussion: Essential Facts

Results and Discussion: Essential Facts

Results and Discussion: Data Analysis

Equations for Error Analysis for Glove Measurements

$$B_{\text{measurement}} = \frac{1}{2}$$
 resolution

$$P = S_{\overline{x}} = \frac{S_x}{\sqrt{N}}$$

$$u_{x} = \pm ((B_{measurement})^{2} + (t_{v,95}P)^{2})^{1/2}$$

Lightly Touching	Camo gloves (40 gram Thinsulate) (mm)	Lined Leather gloves (mm)	Leather (100 gram Thinsulate) (mm)	Polester Mitten (mm)	Leather (mm)
Average	2.167	2.282	3.489	2.371	1.523
Standard Deviation	0.0246	0.0069	0.0485	0.0887	0.0797
Student T	2.262	2.262	2.262	2.262	2.262
Bias Error	0.0005	0.0005	0.0005	0.0005	0.0005
Precision Error	0.0556	0.0156	0.1098	0.2007	0.1804
Total Error	0.0556	0.0156	0.1098	0.2007	0.1804

Equations for Error Analysis of Thermocouples

$$S_{pooled} = \sqrt{\frac{\sum_{i,j=1}^{N} (x_i - x_j)^2}{N-1}}$$

$$P = \frac{S_{pooled}}{\sqrt{N}}$$

$$B_{mean} = \frac{1}{N} \sum_{i,j=1}^{N} (x_i - x_j)$$

$$u_x = \pm ((B_{mean})^2 + (t_{v,95}P)^2)^{1/2}$$

T-Type Thermocouples	(All measurements are in degrees C)					
Calibrator -Standard	TC1	(x-xi)	(X-Xİ) ²	TC2	(x-xi)	(X-Xİ) ²
49.22	47.43	1.79	3.20	48.60	0.62	0.38
59.04	57.94	1.10	1.21	58.37	0.67	0.45
68.76	68.46	0.30	0.09	68.14	0.62	0.38
78.70	77.34	1.36	1.85	78.20	0.50	0.25
88.24	86.84	1.40	1.96	87.96	0.28	0.08
96.67	96.43	0.24	0.06	97.68	-1.01	1.02
106.82	105.89	0.93	0.86	107.29	-0.47	0.22
115.94	115.52	0.42	0.18	116.98	-1.04	1.08
124.58	124.87	-0.29	0.08	126.62	-2.04	4.16
	Σ(x-xi)²		9.50		Σ(x-xi)²	8.03
	Spooled		0.51		Spooled	
	Eprecision		0.16		E precision	0.14
	Ebias_mean		0.81	0.81		-0.21
	Etotal_error		0.82	0.82		0.25

Uncertainty Analysis: Propagation Error

Error Propagation of Thermal Conductance

$$\frac{\partial k}{\partial q} = \frac{\overline{L}}{(\overline{T_i} - \overline{T_e})} = \theta_q$$

$$\frac{\partial k}{\partial L} = \frac{q}{(\overline{T_i} - \overline{T_e})} = \theta_L$$

$$\frac{\partial k}{\partial T_i} = \frac{-q * L}{\left(\overline{T_i} - \overline{T_e}\right)^2} = \theta_T$$

$$\frac{\partial k}{\partial T_e} = \frac{\overline{q} * \overline{L}}{\left(\overline{T_i} - \overline{T_e}\right)^2} = \theta_{Te}$$

 $P_{k} = \left[\left(\theta_{q} * P_{q} \right)^{2} + \left(\theta_{L} * P_{L} \right)^{2} + \left(\theta_{T_{i}} * P_{T_{i}} \right)^{2} + \left(\theta_{T_{e}} * P_{T_{e}} \right)^{2} \right]^{1/2}$

Uncertainty Analysis: Propagation Error

	Polyester	Camo	Brown Leather	100 g thinsulate	Black Leather
θq	8.55236E-05	0.000102346	0.000592108	0.000270465	0.036204808
θL	13.90360241	28.25803114	232.9343371	46.28563849	40.0034944
θTh	-0.001189086	-0.036442595	-0.137922335	-0.012694112	-0.091287974
θΤς	0.001189086	0.036442595	0.137922335	0.012694112	0.091287974
Precision Error (L)	0.00005560	0.00001556	0.00010979	0.00020066	0.00018035
Precision Error (Th)	0.16	0.16	0.16	0.16	0.16
Precision Error (Tc)	0.14	0.14	0.14	0.14	0.14
Propagation Error (W/mK)	0.000794803	0.005675873	0.03335711	0.009494389	0.01590563

Conclusion

- Polyester fleece glove had the lowest thermal conductivity (0.03317 W/mK) – Best glove for cold Iowa winter
- Brown leather had the highest thermal conductivity (0.3799 W/mK) Frostbite anyone?
- Thermal conductivity is the lowest for the polyester fleece glove because it traps the most air
- Obtain more accurate thermal conductivity by increasing the temperature difference